
Introduction to Git Version Control System

Contributions from:
Venkat Malladi
Wei Guo

1 August 2021

Why version control systems exist...

2

Bad enough for a single manuscript!

Imagine the same for a code base...

Don't confuse a VCS with a backup or a deployment system. You
don't have to change or replace any other part of your tool chain
when you start using version control.

A VCS simply records the changes you make to your project's files.

"Piled Higher and Deeper" by Jorge Cham
www.phdcomics.com

Outline

I. Introduction to git
A. What is git?
B. Git workflow: creating a new repository
C. Head
D. Basic git commands
E. Concept of branches
F. Creating a branch/switching between branches
G. Merging branches and resolving conflicts

II. Introduction to Gitlab
A. What is GitLab?
B. GitLab in practice: distributed version control
C. Cloning a remote repository
D. Fetching/pushing to a remote repository
E. Collaborating using git and GitLab

What is a “version control system” and what is a repository?

4

• A way to manage files and directories.

• Track changes over time.

• Recall previous versions.

• Repo is short for repository.

• Usually used to organize a single

project.

• Repos can contain folders and files,

images, videos, spreadsheets, and

datasets – anything your project needs.
In git, the repository is just a simple hidden folder named ".git" in
the root directory of your project.

What is git?

5

• Created by Linus Torvalds in 2005.

• A command line version control program.

• Uses checksums to ensure data integrity.

• Cross-platform.

• Open source, free.

• Distributed version control (as opposed to
centralized).

Distributed version control

6

https://i.ibb.co/cgCdpyH/Central-Distributed.png

Advantages of distributed version control

7

• No need to connect to central server.

• Can work without internet connection.

• No single point of failure.

• Developers can work independently and

merge their work later.

• Every copy of a git repo has the complete

history.

Git tree architecture

8

Basic git workflow:

• Modify files at the working directory.

• Stage files by adding snapshots to staging area.

• Commit the changes to the git directory.

Git tree and use cases

9

https://i.stack.imgur.com/guGTo.png

Users with the Developer role
can create a project in a group
but might not be allowed to
initially push to the default
branch.

Both devs make commits Both devs ask maintainer
to push their commits

Both devs continue their
work

Maintainer adds their
commits and merge it

Dev B asks maintainer to
push his commit

Maintainer merges his
commits

Dev A asks maintainer to
push his commit

Maintainer merges his
commits

Before starting to use git

10

• Setup your name and email so others can know who committed changes:

$ git config --global user.name s191529

$ git config --global user.email daniela.daniel@utsouthwestern.edu

Note: set for all repositories on your computer.

$ git config --local user.email daniela.daniel@utsouthwestern.edu

Note: set differently for each repository.

$ git config --list

user.name=s191529

user.mail=daniela.daniel@utsouthwestern.edu

user.email=daniela.daniel@utsouthwestern.edu

push.default=simple

A simple git workflow

11

1. Initialize a new project in a directory (this creates a new subdirectory named .git that contains all of your
necessary repository files):

$ git init

2. Add a file using a text editor to the directory.

3. Add every change that has been made to the directory:

$ git add hello.txt

4. Commit the change to the repo:

$ git commit -m "important message here"

After initializing a new git repo

12

working directory

staging index

local repository

Make changes to files

Add changes to staging area

Commit changes with a message

Demo: Initializing a new repository

13

$ mkdir learning_git

$ cd learning_git

$ git init

Initialized empty Git repository in

/endosome/work/biohpcadmin/s191529/git/learning_git/.git/

$ touch foo.txt

$ git add foo.txt

$ git status

On branch master

#

Initial commit

#

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

#

new file: foo.txt

#

$ git commit -m "initial commit"

[master (root-commit) 44e7c64] initial commit

1 file changed, 0 insertions(+), 0 deletions(-)

create mode 100644 foo.txt

Commit messages

14

• Tell what it does (present tense).

• Single line summary followed by blank space followed by more complete description.

• Keep messages shorter than 72 characters.

• Ticket or bug number helps.

$ git log

commit 44e7c640286f4ac758670f7a39e145533a14b8c3

Author: s191529 <daniela.daniel@utsouthwestern.edu>

Date: Fri Dec 4 15:03:33 2020 -0600

initial commit

The HEAD pointer

15

• Points to a specific commit in repo.

• As new commits are made, the pointer changes.

• In short, the HEAD is a pointer to the last commit you

made or the last commit that was checked out into your

working directory.

• What happens if you check out into your working

directory while having uncommitted changes?

HEAD

top of master

f30ab34ac298ca9

commit #1 commit #2 commit #3

Committing all changes of tracked files

16

• Allows one to add to staging index and
commit at the same time.

• Grabs everything in working directory.

• Files not tracked or being deleted are not
included:
• Files are tracked automatically after

they are staged for the first time

What changes were made?

17

$ git diff compares changes to files between repo and working directory

$ echo "adcdefghijklmnopqrstuvwxyz" >> foo.txt

$ git diff

diff --git a/foo.txt b/foo.txt

index e69de29..ab74472 100644

--- a/foo.txt

+++ b/foo.txt

@@ -0,0 +1 @@

+adcdefghijklmnopqrstuvwxyz

Note: git diff --staged compares staging index to repo

Note: git diff <filename> can be used as well

Difference between commits

18

$ git diff <commit> <commit>

When using checksum of older commit, will show you all changes compared to
those in your working directory

$ git diff 44e7c640 a0c334ed

diff --git a/foo.txt b/foo.txt

index e69de29..ab74472 100644

--- a/foo.txt

+++ b/foo.txt

@@ -0,0 +1 @@

+adcdefghijklmnopqrstuvwxyz

Deleting files from the repo

19

$ git rm <file> moves deleted file change to staging area (changes still need to
be committed)

$ touch bar.txt

$ git add bar.txt

$ git commit -m "bar.txt"

$ git rm bar.txt

rm 'bar.txt'

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

deleted: bar.txt

#

$ git commit bar.txt -m "removed bar.txt"

Moving or renaming files

20

$ git mv <file> <file>

$ git mv foo.txt alphabet.txt

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

renamed: foo.txt -> alphabet.txt

#

Cloning a repository

21

$ cd ..

$ git clone learning_git test_git

Cloning into 'test_git'...

done.

$ cd test_git/

$ cat alphabet.txt

cat: alphabet.txt: No such file or directory

$ git clone <repo> or git clone <repo> <repo>

Clones a repo and all its branches
Does not clone uncommitted changes in the working directory

A git clone --recursive <repo> will also clone all git sub-repositories in a
repository

Clone to another directory

Why there is no alphabet.txt in this clone?

Undo changes made to a working directory

22

git checkout <file> will grab the file from the repo
removing all changes since last commit

Let’s commit the changes in the original repo:
$ cd ../learning_git/

$ git commit -a -m "renamed foo.txt"

[master ab9bffd] renamed foo.txt

1 file changed, 0 insertions(+), 0 deletions(-)

rename foo.txt => alphabet.txt (100%)

$ echo "123456789" >> alphabet.txt

$ cat alphabet.txt

adcdefghijklmnopqrstuvwxyz

123456789

$ git checkout alphabet.txt

$ cat alphabet.txt

adcdefghijklmnopqrstuvwxyz

working
directory

staging index

repository

checkout

Undo changes made to the staging

23

working
directory

staging index

repository

reset

$ git reset HEAD <file>

$ echo "123456789" >> alphabet.txt

$ git add alphabet.txt

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: alphabet.txt

#

$ git reset HEAD alphabet.txt

Unstaged changes after reset:

M alphabet.txt

$ git status

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working

directory)

#

modified: alphabet.txt

#

no changes added to commit (use "git add" and/or "git commit -a")

Reverting to older versions

24

$ git checkout <commit> --<file>

$ git commit -a -m "added alphabet for revert demo"

[master 331b9b2] added alphabet for revert demo

1 file changed, 1 insertion(+)

$ git log -2

commit 331b9b2ab3c8f19c4b351b59d9990843c5770778

Author: s191529 <daniela.daniel@utsouthwestern.edu>

Date: Mon Dec 7 17:32:20 2020 -0600

added alphabet for revert demo

commit ab9bffd9a94b76b6c9050526317c5d7c6e9f490a

Author: s191529 <daniela.daniel@utsouthwestern.edu>

Date: Mon Dec 7 16:43:14 2020 -0600

renamed foo.txt

$ git checkout ab9bffd9 -- alphabet.txt

$ cat alphabet.txt

adcdefghijklmnopqrstuvwxyz

working
directory

staging index

repository

checkout

Branching

25

• Allows one to try new ideas.

• If an idea does not work, throw away the branch. One does not have to undo

many changes to master branch.

• If the idea does work, merge changes into master branch.

• Note: there is only one working directory!

dgin0

HEAD

f30ab34ac298ca9

c439b 2h9fa

master

branch merge

Branching is your friend

26

Creating a branch

27

git branch – lists branches and displays current branch with *

$ git branch

* master

git checkout -b <branch> – creates a new branch from HEAD
$ git checkout -b newFeature

M alphabet.txt

Switched to a new branch 'newFeature’

$ git branch

master

* newFeature

git checkout <branch> – change to existing branch

Commits can be made independently to each branch.

Comparing branches

28

git diff master..<branch>

$ echo "ABCDEFGHIJKLMNOPQRSTUVWXYZ" >> alphabet.txt

$ git commit -a -m "capitalized alphabet"

[newFeature 12822c2] capitalized alphabet

1 file changed, 1 insertion(+), 1 deletion(-)

$ git diff master..newFeature

diff --git a/alphabet.txt b/alphabet.txt

index ae9d20c..80589c5 100644

--- a/alphabet.txt

+++ b/alphabet.txt

@@ -1,2 +1,2 @@

adcdefghijklmnopqrstuvwxyz

-123456789

+ABCDEFGHIJKLMNOPQRSTUVWXYZ

How do I merge a branch?

29

git merge <branch> – merges branch into current branch

$ git checkout master

Switched to branch 'master’

$ git status

On branch master

nothing to commit, working directory clean

$ cat alphabet.txt

adcdefghijklmnopqrstuvwxyz

123456789

$ git merge newFeature

Updating 331b9b2..12822c2

Fast-forward

alphabet.txt | 2 +-

1 file changed, 1 insertion(+), 1 deletion(-)

$ cat alphabet.txt

adcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Merge conflicts!

30

Merge conflicts are a normal experience of a VCS:

• When two branches have the same file with different content.

• If a file was removed while a branch had it modified.

Git will often resolve conflicts automatically, but in some cases a developer needs to
resolve these manually.

Creating a simple merge conflicts

31

Create foo.txt on master branch*:
$ vi foo.txt

This is to test merge conflicts!!!

$ git add foo.txt

$ git commit -m "foo.txt on master branch" foo.txt

$ git checkout newFeature

Create foo.txt on newFeature branch:
$ vi foo.txt

This is my other 'foo.txt’ file...

$ git add foo.txt

$ git commit -m "foo.txt on newFeature branch" foo.txt

$ git merge master

Auto-merging foo.txt

CONFLICT (add/add): Merge conflict in foo.txt

Automatic merge failed; fix conflicts and then commit the

result.

*File alphabet.txt was removed from the local repo.

Dealing with merge conflicts

32

git merge --abort and resolve conflict manually.

Then attempt to merge again. Tips to reduce the pain of merge conflicts:
• Merge often;
• Keep commits small/focused;
• Bring changes occurring to master into your branch frequently (“tracking”).

$ cat foo.txt

<<<<<<< HEAD

This is my other 'foo.txt’ file...

=======

This is to test merge conflicts!!!

>>>>>>> master

$ git merge --abort

$ cat foo.txt

This is my other 'foo.txt’ file...

Online (remote) repository hosting

33

Most used site by far!

We have https://git.biohpc.swmed.edu – local GitLab, it’s a lot like GitHub.

https://git.biohpc.swmed.edu/

git.biohpc.swmed.edu

34

Browse files and history

Manage access rights

Create branches/forks

Perform basic editing online

Track issues/bugs, merge requests

Accessible from the internet

Accounts for non-UTSW collaborators available*

Set up SSH credentials on git.biohpc.swmed.edu

35

Creating a new project on GitLab

36

Push Existing Repo to New Project

37

$ git remote add origin git@git.biohpc.swmed.edu:s191529/learning_git.git

$ git remote -v

origin git@git.biohpc.swmed.edu:s191529/learning_git.git (fetch)

origin git@git.biohpc.swmed.edu:s191529/learning_git.git (push)

$ git push -u origin --all

Counting objects: 31, done.

Delta compression using up to 32 threads.

Compressing objects: 100% (16/16), done.

Writing objects: 100% (31/31), 2.65 KiB | 0 bytes/s, done.

Total 31 (delta 2), reused 0 (delta 0)

remote: To create a merge request for newFeature, visit:

remote: https://git.biohpc.swmed.edu/s191529/learning_git/-

/merge_requests/new?merge_request%5Bsource_branch%5D=newFeature

remote: The private project s191529/learning_git was successfully created.

remote: To configure the remote, run:

remote: git remote add origin git@git.biohpc.swmed.edu:s191529/learning_git.git

remote: To view the project, visit:

remote: https://git.biohpc.swmed.edu/s191529/learning_git

To git@git.biohpc.swmed.edu:s191529/learning_git.git

* [new branch] master -> master

* [new branch] newFeature -> newFeature

Branch master set up to track remote branch master from origin.

Branch newFeature set up to track remote branch newFeature from origin.

mailto:git@git.biohpc.swmed.edu
mailto:git@git.biohpc.swmed.edu
mailto:git@git.biohpc.swmed.edu

This is how the project looks on GitLab

38

Push and pull to/from the remote repo

39

Summary

40

git checkout -b <branch> (create and switch to new branch)

git branch -d <branch> (delete a branch)

git merge <branch> (merge with another branch)

git diff <source> <destination> (preview before merging branches)

git log (study the log)

git log --graph --oneline --decorate --all (fancy)

git checkout -- <filename> (replace local changes)

git fetch origin (drop local changes)

git reset --hard origin/master (reset)

Edit the file .gitignore

git config --list (list configuration values)

Resources

41

Notes Specific to the BioHPC git server
https://portal.biohpc.swmed.edu/content/guides/using-biohpc-git/

Tutorials
https://www.atlassian.com/git/tutorials/

Videos
https://www.youtube.com/watch?v=r63f51ce84A

https://portal.biohpc.swmed.edu/content/guides/using-biohpc-git/
https://www.atlassian.com/git/tutorials/
https://www.youtube.com/watch?v=r63f51ce84A

