UTSouthwesternMedical Center

Lyda Hill Department of Bioinformatics

BioHPC

Alphafold – Google Deepmind's protein prediction platform

[web] portal.biohpc.swmed.edu

[email] biohpc-help@utsouthwestern.edu

Outline

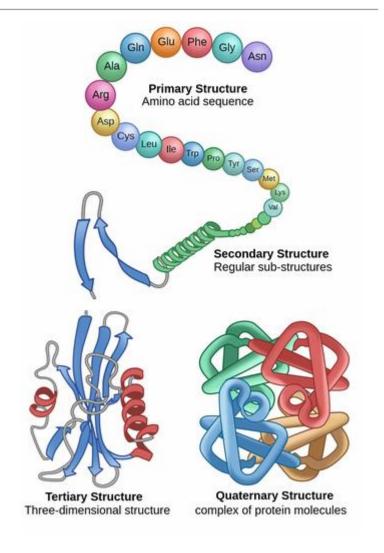
- Protein structure
- CASP, the Critical Assessment of protein Structure Prediction
- Alphafold paper
- Alphafold source code on git hub
- Alphafold database
- Alphafold limitation
- Demo: how to run Alphafold on BioHPC

Protein structure

- Protein structure
- Protein folding problem
 - Sequence of amino acids do not show how they fold into shape
- Why is protein folding important?
 - Protein structure dictates its function
 - Scientists can develop drugs based on known protein structures
- Methods:
 - X-ray crystallography
 - NMR (Nuclear Magnetic Resonance)
 - CryoEM
 - AI (Artificial Intelligence)

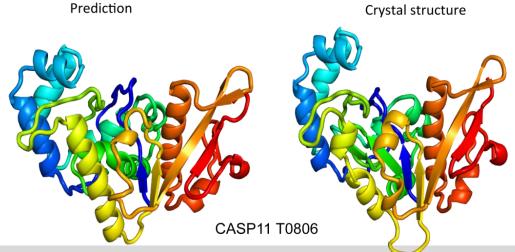
Ref to

https://deepmind.com/blog/article/AlphaFold-Using-Al-for-scientific-discovery



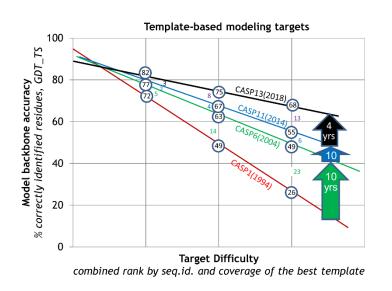
CASP

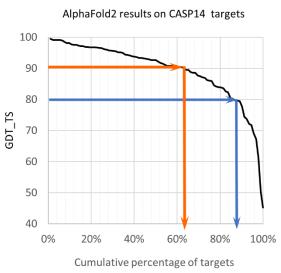
- CASP, Critical Assessment of protein Structure Prediction
- Community-wide, worldwide experiment for protein structure prediction
- Take place every two years since 1994
- Problem:
 - Target proteins: structures just been solved and hold by Protein Data Bank
 - Neither predictors nor the organizers and assessors know the structures of the target proteins
 - Evaluation: GDT-TS (global Distance Test Total Score) describing percentage of well-modeled residues in the model with respect to the target

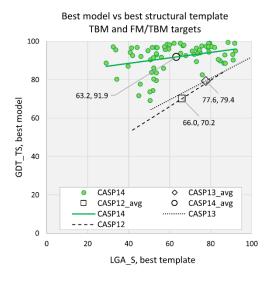


Alphafold in CASP

- Over the course of CASP, template-based modeling get enormous improvement
- The 2014-2018 model accuracy improvement doubled that of 2004-2014
- CASP14 marked an extraordinary increase in the accuracy of the computed three-dimensional protein structures with the emergence of the advanced deep learning method AlphaFold2
- AlphaFold2 proved to be competitive with the experimental accuracy
- The accuracy of CASP14 models is significantly higher than the corresponding average of previous two CASPs







Alphafold paper

Article

Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-03819-2

Received: 11 May 2021

Accepted: 12 July 2021

Published online: 15 July 2021

Open access

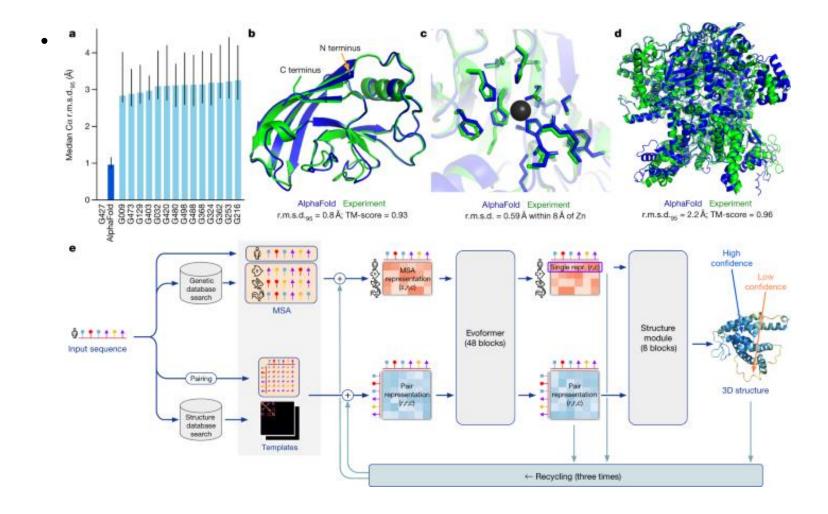
Check for updates

John Jumper^{1,4}©, Richard Evans^{1,4}, Alexander Pritzel^{1,4}, Tim Green^{1,4}, Michael Figurnov^{1,4}, Olaf Ronneberger^{1,4}, Kathryn Tunyasuvunakool^{1,4}, Russ Bates^{1,4}, Augustin Zidek^{1,4}, Anna Potapenko^{1,4}, Alex Bridgland^{1,4}, Clemens Meyer^{1,4}, Simon A. A. Kohl^{1,4}, Andrew J. Ballard^{1,4}, Andrew Cowle^{1,5}, Bernardino Romera-Paredes^{1,4}, Stanislav Nikolov^{1,4}, Rishub Jain^{1,4}, Jonas Adler¹, Trevor Back¹, Stig Petersen¹, David Reiman¹, Ellen Clancy¹, Michal Zielinski¹, Martin Steinegger^{2,3}, Michalina Pacholska¹, Tamas Berghammer¹, Sebastian Bodenstein¹, David Silver¹, Oriol Vinyals¹, Andrew W. Senior¹, Koray Kavukcuoglu¹, Pushment Kohli¹ & Demis Hassabis^{1,4,5}

Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort1-4, the structures of around 100,000 unique proteins have been determined5, but this represents a small fraction of the billions of known protein sequences^{6,7}. Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence-the structure prediction component of the 'protein folding problem'8-has been an important open research problem for more than 50 years9. Despite recent progress¹⁰⁻¹⁴, existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14)15, demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm.

Jumper, John, et al. "Highly accurate protein structure prediction with AlphaFold." *Nature* 596.7873 (2021): 583-589.

Alphafold paper



Alphafold code on github

A) Deepmind https://github.com/deepmind/alphafold

- Docker:
 - Use "root" (administrative account) to run docker
 - On HPC, users are not allowed to use "root" to run docker
- Databases:
 - full database (2.2TB) /project/apps_database/alphafold/database_full
 - reduced database (415GB)
- Running Alphafold: run_docker.py

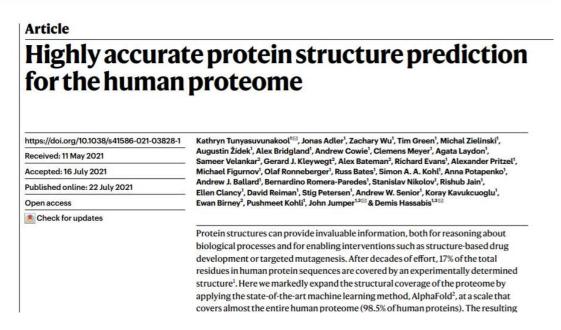
```
python3 docker/run_docker.py --fasta_paths=T1050.fasta --max_template_date=2020-05-14
```

- B) Alphafold non docker https://github.com/kalininalab/alphafold_non_docker
- Conda environment instead of docker
- Download Alphafold git repo
- Databases: full database and reduced database, same as above
- Install as a BioHPC module
- Running Alphafold: run_alphafold.sh calls run_alphafold.py (Deepmind)

```
run_alphafold -d /project/apps_database/alphafold/database_full -c /your/path/to/dummy_test/ -m model_1 -f /your/path/to/query.fasta -t 2020-05-14
```


Alphafold database

- https://alphafold.ebi.ac.uk/
- collaboration between Deepmind and EMBL-EBI
- Human proteome (98.5%): 58% of residues with a confident prediction, of which a subset (36% of all residues) have very high confidence
- Will cover over 100 million proteins in UniRef90 in the coming months



Tunyasuvunakool, Kathryn, et al. "Highly accurate protein structure prediction for the human proteome." Nature 596.7873 (2021): 590-596.

Alphafold limitation

- Current use cases: predicting the structure of a single protein chain with a naturally occurring sequence
- Limitations:
 - Multi-chain prediction (complex)
 - Regions that are intrinsically disordered or unstructured in isolation
 - AlphaFold has not been validated for predicting the effect of mutations
 - Where a protein is known to have multiple conformations AlphaFold usually only produces one of them
 - AlphaFold does not predict the positions of any non-protein components found in experimental structures (such as cofactors, metals, ligands, ions, DNA/RNA, or post-translational modifications)

Ref to https://alphafold.ebi.ac.uk/faq#faq-8

RoseTTAfold from Baker's lab in University of Washington in Seattle

Science RESEARCH ARTICLES

Cite as: M. Baek et al., Science 10.1126/science.abj8754 (2021).

Accurate prediction of protein structures and interactions using a three-track neural network

Minkyung Baek^{1,2}, Frank DiMaio^{1,2}, Ivan Anishchenko^{1,2}, Justas Dauparas^{1,2}, Sergey Ovchinnikov^{3,4}, Gyu Rie Lee^{1,2}, Jue Wang^{1,2}, Qian Cong^{5,6}, Lisa N. Kinch⁷, R. Dustin Schaeffer⁶, Claudia Millán⁸, Hahnbeom Park^{1,2}, Carson Adams^{1,2}, Caleb R. Glassman^{9,10}, Andy DeGiovanni¹², Jose H. Pereira¹², Andria V. Rodrigues¹², Alberdina A. van Dijk¹³, Ana C. Ebrecht¹³, Diederik J. Opperman¹⁴, Theo Sagmeister¹⁵, Christoph Buhlheller^{15,16}, Tea Pavkov-Keller^{15,17}, Manoj K. Rathinaswamy¹⁸, Udit Dalwadi¹⁹, Calvin K. Yip¹⁹, John E. Burke¹⁸, K. Christopher Garcia^{9,10,11,20}, Nick V. Grishin^{6,21,7}, Paul D. Adams^{12,22}, Randy J. Read⁸, David Baker^{1,2,23*}

¹Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. ²Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. ³Faculty of Arts and Sciences, Division of Science, Harvard University, Cambridge, MA 02138, USA. ⁴John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA. ⁵Upenartment of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA. ⁶Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA. ⁸Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK. ⁸Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA. ¹⁰Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. ¹⁰Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. ¹⁰Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. ¹⁰Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. ¹⁰Department of Biochemistry, Eocus Area Human Metabolomics, North-West University, 2531 Potchefstroom, South Africa. ¹⁰Department of Biochemistry, University of Graz, Humboldistrasses So, 8010 Graz, Austria. ¹⁰Medical University of Graz, Graz, Austria. ¹⁰Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada. ¹⁰Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada. ²⁰Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. ²⁰Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA. ²⁰Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA. ²⁰Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX,

*Corresponding author. Email: dabaker@uw.edu

Baek, Minkyung, et al. "Accurate prediction of protein structures and interactions using a three-track neural network." Science 373.6557 (2021): 871-876.

GPU nodes on BioHPC

GPU Partition	Number of CPU/Node	Memory Per Node	Number of GPU/Node	GPU Memory	Number of nodes
GPU	32	256GB	1 K20/K40	6GB/12GB	8
GPUp4	72	384GB	1 P4	8GB	16
GPUp40	72	384GB	1 P40	24GB	16
GPUp100	56	256GB	2 P100	16GB	12
GPUv100s	72	384GB	1 V100S	32GB	32
GPU4v100	72	384GB	4 V100S	32GB	12
GPUA100	72	1.5TB	1 A100	40GB	16

Check node availability

```
[s179389@Nucleus005 ~]$ sinfo -p GPUp4
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
GPUp4 up infinite 5 alloc NucleusC[002,012-013,016-017]
GPUp4 up infinite 11 idle NucleusC[003-011,014-015]
```

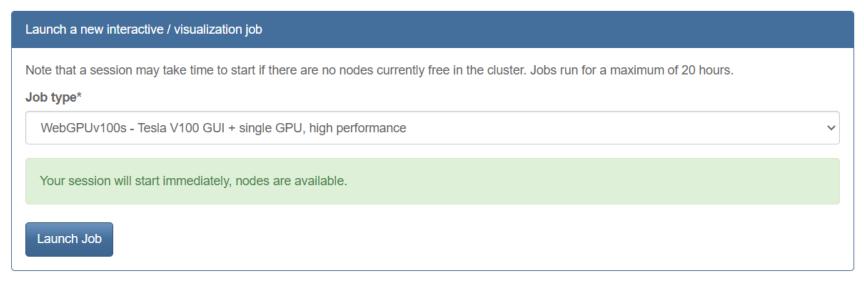

Run alphaFold on BioHPC_webGPU

Launch a webGPU session through: https://portal.biohpc.swmed.edu/terminal/webgui/

For best performance we recommend TurboVNC for webGUI and webGPU sessions, and the NICE DCV client for webWinDCV sessions.

TurboVNC Client Download: [Windows] [Mac OSX] [Linux 64-bit .deb] [Linux 64-bit .rpm] (Version 2.0.91)

NICE DCV Client Download: [Windows] [Mac OSX] [Linux .tar.gz]



Run alphaFold on BioHPC_webGPU

```
[s179389@NucleusC038 alphafold_test]$ Is input_fasta/
query_2.fasta query.fasta
[s179389@NucleusC038 alphafold test]$ Is output alphafold/
test1 test2
[s179389@NucleusC038 alphafold test]$ module load alphafold/2.0
     This package provides an implementation of the inference pipeline of AlphaFold v2.0, it's
currently running using conda env on biohpc
This application runs under a conda env alphafold/2.0 non docker.
To run alphafold2:
run alphafold <option>
To get a full discription of option and paramets:
run_alphafold --help
[s179389@NucleusC038 alphafold_test]$ run_alphafold -d
.....
10914 14:22:35.268986 46912496447232 run alphafold.py:280] Using random seed
5465313646353885249 for the data pipeline
.....
```


Run alphaFold on BioHPC_webGPU

Usage: run_alphafold.sh < OPTIONS >

Required Parameters:

- -d <data dir> Path to directory of supporting data
- -o <output_dir> Path to a directory that will store the results.
- -m <model_names> Names of models to use (a comma separated list)
- -f <fasta path> Path to a FASTA file containing one sequence
- -t <max_template_date> Maximum template release date to consider (ISO-8601 format i.e. YYYY-MM-DD). Important if folding historical test sets

Optional Parameters:

- -n <openmm_threads> OpenMM threads (default: all available cores)
- -b <benchmark> Run multiple JAX model evaluations to obtain a timing that excludes the compilation time, which should be more indicative of the time required for inferencing many proteins (default: 'False')
- -g <use_gpu> Enable NVIDIA runtime to run with GPUs (default: True)
- -a <gpu_devices> Comma separated list of devices to pass to 'CUDA_VISIBLE_DEVICES' (default:0)
- -p -p config (reduced_dbs), no ensembling and full genetic database config (full_dbs) or full genetic database config and 8 model ensemblings (casp14)

\$ run_alphafold -d /project/apps_database/alphafold/database_full -o /project/biohpcadmin/s179389/alphafold_test/dummy_test_reduced_database/ -m model_1 -f /project/biohpcadmin/s179389/alphafold_test/example/query.fasta -t 2020-05-14 -p reduced_dbs

Run alphaFold on BioHPC__input &output

```
/project/biohpcadmin/s179389/alphafold_test

-- input_fasta
-- query_2.fasta
-- query.fasta
-- output_alphafold
-- query
-- query_2
```

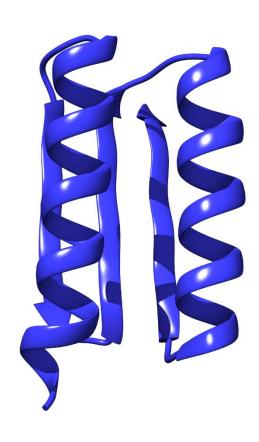

submit a SLURM job through: https://portal.biohpc.swmed.edu/sbatch/#/script

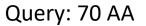
```
module load alphafold/2.0
# COMMAND GROUP 1
run_alphafold -d /project/apps_database/alphafold/database_full \
       -o /project/biohpcadmin/s179389/alphafold_test/dummy_test_slrum/\
       -m model_1,model_2 \
       -f /project/biohpcadmin/s179389/alphafold_test/example/query.fasta\
       -t 2020-05-14
```

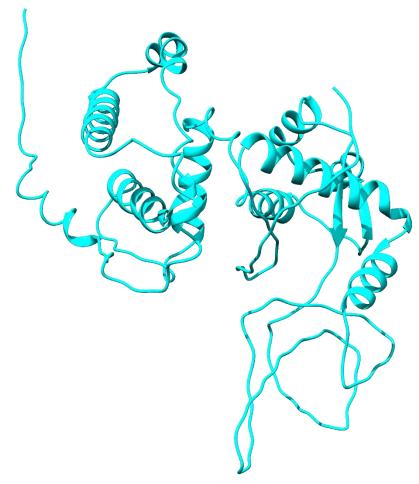

submit a SLURM job through: https://portal.biohpc.swmed.edu/sbatch/#/script

```
module load alphafold/2.0
run_alphafold -d /project/apps_database/alphafold/database_full \
       -o /project/biohpcadmin/s179389/alphafold test/dummy test slrum/\
       -m model 1,model 2 \
       -f /project/biohpcadmin/s179389/alphafold test/example/query 2.fasta \
       -t 2020-05-14 &
run alphafold -d /project/apps database/alphafold/database full \
       -o /project/biohpcadmin/s179389/alphafold test/dummy test slrum/\
       -m model 1,model 2 \
       -f /project/biohpcadmin/s179389/alphafold test/example/query.fasta \
       -t 2020-05-14 &
wait
```


Run alphaFold on BioHPC_test







Query_2: 350 AA

UT Southwestern Medical Center Lyda Hill Department of Bioinformatics

BioHPC

Questions? Comments? Collaborations?

Email: biohpc-help@utsouthwestern.edu

Thanks!

Run alphaFold on BioHPC_test

Run alphaFold on BioHPC__test

>dummy_sequence
GWSTELEKHREELKEFLKKEGITNVEIRIDNGRLEVRVEGGTERLKRFLEELRQKLEKK
GYTVDIKIE

>sample sequence consisting of 350 residues
MTANHLESPNCDWKNNRMAIVHMVNVTPLRMMEEPRAAVEAAFEGIMEPAVVGDMVEYWN
KMISTCCNYYQMGSSRSHLEEKAQMVDRFWFCPCIYYASGKWRNMFLNILHVWGHHHYPR
NDLKPCSYLSCKLPDLRIFFNHMQTCCHFVTLLFLTEWPTYMIYNSVDLCPMTIPRRNTC
RTMTEVSSWCEPAIPEWWQATVKGGWMSTHTKFCWYPVLDPHHEYAESKMDTYGQCKKGG
MVRCYKHKQQVWGNNHNESKAPCDDQPTYLCPPGEVYKGDHISKREAENMTNAWLGEDTH
NFMEIMHCTAKMASTHFGSTTIYWAWGGHVRPAATWRVYPMIQEGSHCQC

