
Image Processing With Python

1 Updated for 2021-12-15

[web] portal.biohpc.swmed.edu

[email] biohpc-help@utsouthwestern.edu

Ipython Notebooks

2

Notebooks for this session can be found on the training page.
https://portal.biohpc.swmed.edu/content/training/training-slides/

• Ipython
• *.ipynb
• The notebook format itself – similar to a MATLAB .mlx Live Editor file.

• Jupyter
• The server which provides the interface for you.
• Runs using your installed Python kernel.

• JupyterLab
• Like a nicer Jupyter – a little bit better for data exploration.

Python image processing resources available on the internet:
• https://www.numerical-tours.com/python/
• https://towardsdatascience.com/image-data-analysis-using-python-edddfdf128f4
• https://medium.com/analytics-vidhya/image-processing-with-python-applications-in-

machine-learning-17d7aac6bc97

https://portal.biohpc.swmed.edu/content/training/training-slides/
https://www.numerical-tours.com/python/
https://towardsdatascience.com/image-data-analysis-using-python-edddfdf128f4
https://medium.com/analytics-vidhya/image-processing-with-python-applications-in-machine-learning-17d7aac6bc97

Getting a JupyterLab environment

3

Python Libraries + Modules used in this training

4

All should already be installed with JupyterLab OnDemand.

Docs:
• os : https://docs.python.org/3/library/os.html
• matplotlib : https://matplotlib.org/
• scipy :

• General : https://docs.scipy.org
• ndimage : https://docs.scipy.org/doc/scipy/reference/ndimage.html

• skimage : https://scikit-image.org/
• sklearn : https://scikit-learn.org/stable/
• numpy :

• General : https://numpy.org/doc/stable/index.html
• ndarrays : https://numpy.org/doc/stable/reference/arrays.ndarray.html#id1

https://docs.python.org/3/library/os.html
https://matplotlib.org/
https://docs.scipy.org/doc/scipy/reference/ndimage.html
https://docs.scipy.org/doc/scipy/reference/ndimage.html
https://scikit-image.org/
https://scikit-learn.org/stable/
https://numpy.org/doc/stable/index.html
https://numpy.org/doc/stable/reference/arrays.ndarray.html#id1

Basic Image Processing Concepts

5

• Image processing can mean multiple things:
• Image conditioning

• Changing the quality of the data at a low level
• Filtering, interpolation
• Data -> Data

• Image analysis
• Deriving other, abstract features from your data
• Histograms, mean/variance of a region
• Data -> Information

• Image interpretation
• Understanding the content of an image
• Data -> knowledge

Today’s focus

Briefly touched on

Images as Arrays

6

Python and various modules/packages tend to think of images as arrays of different sorts.
• Lists of lists (Python itself)
• ndarray (scipy)
• xarray (xarray)
• DataFrames (pandas)

Common data types for image pixels:
• bool (binary/Boolean) – [0,1]
• int (signed integer) – any whole number.
• float (double-precision floating point) – Decimal numbers (e.g. 2.2251e-308, 0.4,

0.333333…)
• uint8 (unsigned 8-bit) – [0,255]
• uint16 (unsigned 16-bit) – [0,65535]

You’ll frequently move between different data types.
You should know what the ‘natural range’ of your data type is.

Image Presentation – Changing the Data vs Changing the Display

7

You often have the choice to change your data or your display – when you
can, change your display so you don’t affect your data.

See Exercise 1 for more.

Python Array Indexing

8

• Python starts counting indexes from 0, and arranges coordinates like C does (row-major)
• Compare/contrast to MATLAB, which is Fortran-like.
• This is a common source of errors – be mindful!

• Can also count by ‘backward index’

+ Index 0 1 2 3 4 5 6 7 8

Entry A B C D E F G H I

- Index -9 -8 -7 -6 -5 -4 -3 -2 -1

letter_list = [“A”, ”B”, ”C”, ”D”, ”E”, ”F”, ”G”, ”H”, ”I”]

• Slice indexes are defined by [START:STOP] or [START:STOP:STRIDE]
• STOP index is NOT included

• This is so that letter_list_2 = letter_list[0:length(letter_list)] is sensible.
• Stride can be positive or negative, determining the counting direction.

Python Array Indexing

9

+ Index 0 1 2 3 4 5 6 7 8

Entry A B C D E F G H I

- Index -9 -8 -7 -6 -5 -4 -3 -2 -1

letter_list[0:5]

letter_list[:5]

letter_list[-8:5]

letter_list[1:-1]

letter_list[-1:1:-1]

letter_list[::-1]

letter_list[:]

[start:stop:stride]

letter_list[-5:-8:-1]

letter_list[-5:-8:1]

Loops

10

Somewhat like for-loops in other languages, but it’s easier to define complex behavior.

Defining a range of indexes to loop:

Looping an iterable:

List Comprehension:

List Comprehension - A little more complex, but a lot more efficient.

11

<expression> and <condition> will usually involve <item>, though this is not required.

Generate new data:

Filter existing data:

Multi-dimensional arrays – Lists of Lists

12

BW -4 -3 -2 -1

FW 0 1 2 3

-5 0 A F K P

-4 1 B G L Q

-3 2 C H M R

-2 3 D I N S

-1 4 E J O T

Python counts in ‘row-major’ ordering, and orders dimensions like C does.
- Multidimensional arrays are ‘lists of lists’

my_arr=[['A','F','K','P'],['B','G','L','Q'],['C','H','M','R'],['D','I','N','S'],['E','J','O','T']]

my_arr[2][1:3] H M

my_arr[-1][:] E J O T

multi-dimensional arrays – numpy arrays:

13

BW -4 -3 -2 -1

FW 0 1 2 3

-5 0 A F K P

-4 1 B G L Q

-3 2 C H M R

-2 3 D I N S

-1 4 E J O T

Numpy simplifies the representation a little:

my_ndarr[2,1:3] H M

my_ndarr[-1,:] E J O T

import numpy as np
my_ndarr = np.array(my_arr)

Segmentation – Separating an image into parts

14

• Most basic: Foreground/background
• Bright or dark background with a dark or bright foreground, respectively.
• Choose a cutoff value, threshold.
• Global thresholds can work, but can miss important elements

• More complex:
• Adaptive thresholds
• Texture clustering
• Machine learning methods

Mathematical Morphology

15

• Structuring element: A binary array of odd size (so that it has a ‘center’), or with an explicitly defined
‘center’ element.

• Element is moved over all pixels in an image and a set-theoretic question is asked of the relationship
between the structuring element and the image.
• ‘Fit’ : All of the True elements of the strel are on top of True elements in the image.
• ‘Hit’: Any of the True elements of the strel are on top of True elements in the image.
• ‘Miss’: None of the True elements of the strel are on top of True element in the image.

https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/morops.htm

Mathematical Morphology – Fit, Hit, and Miss

16

HIT
FIT

MISS

Structuring Element

Base Image

Mathematical Morphology – Basic Binary

17

• Erosion: All points in the image where the structuring element ‘fits’, but not where it ‘hits’.
• Tends to make structures smaller.

• Dilation: All points in the image where the structuring element hits (which includes where it fits)
• Tends to make structures larger and smoother.

• Opening: Erosion of an image by a strel, followed by a dilation with that same strel.
• Tends to ‘round off’ convex parts of images and remove fine detail.
• Removes structures which are SMALLER than the strel and BRIGHTER than their surroundings.

• Closing: Dilation followed by erosion.
• Tends to result in concave structures being smoothed out.
• Connects slightly-separated bright structures, and removes dark structures smaller than the strel.

Erosion
Dilation

Opening Closing

Map of the basic MM operations.

18

Dilation

Erosion

Str.el.

Mathematical Morphology - Grayscale

19

• Grayscale images can be treated similarly, but with a slightly modified interpretation of ‘hit or miss’
• Dilation will result in a pixel taking on the max value defined by the moving window of the strel.
• Erosion will result in a pixel taking on the min value defined by the moving window of the strel.

Grayscale transforms:
• Top-hat transform: Difference between an image and its opening.

• Returns elements that are SMALLER than the strel and BRIGHTER than their surroundings
• e.g. define a strel which is a disk of size slightly larger than speckle artifacts – punctate

structures.

• Bot-hat (‘black tophat’): Difference between the closure of an image and the original image.
• Returns elements that are SMALLER than the strel and DARKER than their surroundings.
• e.g. holes/quenched regions.

