UT Southwestern Medical Center

Lyda Hill Department of Bioinformatics

Image Processing With Python

[web] portal.biohpc.swmed.edu [email] biohpc-help@utsouthwestern.edu

Updated for 2021-12-15

BioHPC

Notebooks for this session can be found on the training page. <u>https://portal.biohpc.swmed.edu/content/training/training-slides/</u>

- Ipython
 - *.ipynb
 - The notebook format itself similar to a MATLAB .mlx Live Editor file.
- <u>Jupyter</u>
 - The server which provides the interface for you.
 - Runs using your installed Python kernel.
- JupyterLab
 - Like a nicer Jupyter a little bit better for data exploration.

Python image processing resources available on the internet:

- <u>https://www.numerical-tours.com/python/</u>
- <u>https://towardsdatascience.com/image-data-analysis-using-python-edddfdf128f4</u>
- <u>https://medium.com/analytics-vidhya/image-processing-with-python-applications-in-machine-learning-17d7aac6bc97</u>

Getting a JupyterLab environment

UT South Me Lyda Hill Depar	edical C	enter formatics	Bioł	HPC							
Home No	ews - A	vbout -	Status -	Training -	Guides -	FAQs	Cloud Services -	BioHPC OnDemand -	Links -	Software -	Careers≁
E	BioHP	C Or	Dema	nd - Ju	pyter	Lab		OnDemand DIGITS OnDemand Jupyter			
	Jupyt	er		JupyterLa developm has full st terminals, work area	bis the next tent environ upport for Ju , data file vi a.	kt-generation iment for wor upyter notebo ewers, and o	web-based user inter king with notebooks, c poks. Additionally, Jup ther custom compone	OnDemand JupyterLab OnDemand BisQue OnDemand RStudio OnDemand Applications OnDemand CryoSPARC OnDemand CLARA	n interact tly, Jupyte xt editors cs in a tab	tive rrLab , bbed	
		Launch a	new JupyterLat	session			33 return (signa + (y - x), x + (r	rho = 1] = y, x + y = beta + 1]			
		Note that Job type webJu Your se	a session may t * pyterLab - Jupyt ession will start i	ake time to start i er Lab with kerne mmediately, node	f there are no Is	nodes currently	free in the cluster. Jobs run	for a maximum of 20 hours.	v		

All should already be installed with JupyterLab OnDemand.

Docs:

- os : https://docs.python.org/3/library/os.html
- matplotlib : <u>https://matplotlib.org/</u>
- scipy :
 - General : <u>https://docs.scipy.org</u>
 - ndimage : <u>https://docs.scipy.org/doc/scipy/reference/ndimage.html</u>
- skimage : <u>https://scikit-image.org/</u>
- sklearn : <u>https://scikit-learn.org/stable/</u>
- numpy :
 - General : <u>https://numpy.org/doc/stable/index.html</u>
 - ndarrays : <u>https://numpy.org/doc/stable/reference/arrays.ndarray.html#id1</u>

Basic Image Processing Concepts

- Image processing can mean multiple things:
 - Image conditioning
 - Changing the quality of the data at a low level
 - Filtering, interpolation
 - Data -> Data
 - Image analysis
 - Deriving other, abstract features from your data
 - Histograms, mean/variance of a region
 - Data -> Information
 - Image interpretation
 - Understanding the content of an image
 - Data -> knowledge

Today's focus ata Briefly touched on

Python and various modules/packages tend to think of images as arrays of different sorts.

- Lists of lists (Python itself)
- ndarray (scipy)
- xarray (xarray)
- DataFrames (pandas)

Common data types for image pixels:

- **bool** (binary/Boolean) [0,1]
- **int** (signed integer) any whole number.
- float (double-precision floating point) Decimal numbers (e.g. 2.2251e-308, 0.4, 0.333333...)
- **uint8** (unsigned 8-bit) [0,255]
- **uint16** (unsigned 16-bit) [0,65535]

You'll frequently move between different data types. You should know what the 'natural range' of your data type is.

You often have the choice to change your data or your display – when you can, change your display so you don't affect your data.

See Exercise 1 for more.

Python Array Indexing

- Python starts counting indexes from 0, and arranges coordinates like C does (row-major)
 - Compare/contrast to MATLAB, which is Fortran-like.
 - This is a common source of errors be mindful!
- Can also count by 'backward index'

+ Index	0	1	2	3	4	5	6	7	8
Entry	A	В	C	D	Е	F	G	Н	I
- Index	-9	-8	-7	-6	-5	-4	-3	-2	-1

letter_list = ["A", "B", "C", "D", "E", "F", "G", "H", "I"]

- Slice indexes are defined by [START:STOP] or [START:STOP:STRIDE]
 - STOP index is <u>NOT</u> included
 - This is so that letter_list_2 = letter_list[0:length(letter_list)] is sensible.
 - Stride can be positive or negative, determining the counting direction.

Python Array Indexing

Somewhat like for-loops in other languages, but it's easier to define complex behavior.

Looping an iterable:	<pre>image_names = [] for filename in filelist: if filename[-4:]=='.tif': image_names.append(filename)</pre>
----------------------	--

new_list = [(<expression>) for (<item> in <iterable>) if (<condition> == True)]

<expression> and <condition> will usually involve <item>, though this is not required.

```
# Getting the squares of numbers...
print( [(x**2) for x in range(0,5) ] )

Generate new data:
# Only getting the squares of originally even numbers.
print( [(x**2) for x in range(0,5) if (x % 2 == 0)])
```

Filte	er existing data:								
	image_names =	[filename	for	filename	in	filelist	if	<pre>filename[-4:]=='.tif']</pre>	

Python counts in 'row-major' ordering, and orders dimensions like C does. - Multidimensional arrays are 'lists of lists'

my_arr=[['A','F','K','P'],['B','G','L','Q'],['C','H','M','R'],['D','I','N','S'],['E','J','O','T']]

BW		-4	-3	-2	-1
	FW	0	1	2	3
-5	0	А	F	К	Р
-4	1	В	G	L	Q
-3	2	С	Н	Μ	R
-2	3	D	I	Ν	S
-1	4	Е	J	0	Т

multi-dimensional arrays – numpy arrays:

Numpy simplifies the representation a little:

```
import numpy as np
my_ndarr = np.array(my_arr)
```

BW		-4	-3	-2	-1
	FW	0	1	2	3
-5	0	А	F	К	Р
-4	1	В	G	L	Q
-3	2	С	Н	Μ	R
-2	3	D	I	Ν	S
-1	4	E	J	0	Т

- Most basic: Foreground/background
 - Bright or dark background with a dark or bright foreground, respectively.
 - Choose a cutoff value, threshold.
 - Global thresholds can work, but can miss important elements
- More complex:
 - Adaptive thresholds
 - Texture clustering
 - Machine learning methods

Mathematical Morphology

- Structuring element: A binary array of odd size (so that it has a 'center'), or with an explicitly defined 'center' element.
- Element is moved over all pixels in an image and a set-theoretic question is asked of the relationship between the structuring element and the image.
 - *'Fit'* : **All of the True elements of the strel** are on top of True elements in the image.
 - *'Hit':* **Any of the True elements of the strel** are on top of True elements in the image.
 - *'Miss':* None of the True elements of the strel are on top of True element in the image.

https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm https://homepages.inf.ed.ac.uk/rbf/HIPR2/morops.htm

Mathematical Morphology – Fit, Hit, and Miss

Structuring Element

Base Image

Mathematical Morphology – Basic Binary

- Erosion: All points in the image where the structuring element 'fits', but **not** where it 'hits'.
 - Tends to make structures smaller.
- Dilation: All points in the image where the structuring element hits (which includes where it fits)
 - Tends to make structures larger and smoother.
- Opening: Erosion of an image by a strel, followed by a dilation with that same strel.
 - Tends to 'round off' convex parts of images and remove fine detail.
 - Removes structures which are SMALLER than the strel and BRIGHTER than their surroundings.
- Closing: Dilation followed by erosion.
 - Tends to result in concave structures being smoothed out.
 - Connects slightly-separated bright structures, and removes dark structures smaller than the strel.

Map of the basic MM operations.

- Grayscale images can be treated similarly, but with a slightly modified interpretation of 'hit or miss'
 - Dilation will result in a pixel taking on the max value defined by the moving window of the strel.
 - Erosion will result in a pixel taking on the min value defined by the moving window of the strel.

Grayscale transforms:

- Top-hat transform: Difference between an image and its opening.
 - *Returns elements that are SMALLER than the strel and BRIGHTER than their surroundings*
 - e.g. define a strel which is a disk of size slightly larger than speckle artifacts punctate structures.
- Bot-hat ('black tophat'): Difference between the closure of an image and the original image.
 - *Returns elements that are SMALLER than the strel and DARKER than their surroundings.*
 - e.g. holes/quenched regions.

