UTSouthwestern
Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

Data handling in R

Amit Amritkar,
Computer Scientist

Working with Data - Data Wrangling

= \ariable Types & Data Structures

» Import, Dealing with Missing Data

» Transformation, Subsetting, Merging & Reshaping
» Data Cleaning

» Data Export

UT Southwestern

Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

Using Rstudio on BioHPC resources

https://portal.biohpc.swmed.edu/content/ (Use VPN)
- Cloud Services = RStudio
- BioHPC OnDemand = OnDemand RStudio

&« C @ © & https://portal.biohpc.swmed.edu/content/ B - 9% Yy IND O T s =
UTSOI.IthweStefn . ¥ Comment on this page M
Medical Center | BIOHPC 2 Logged in as: s201048

Lyda Hill Department of Bioinformatics

Home News - About~ Status~ Training » Guides~ FAQs Cloud Services BioHPC OnDemand Links~ Software » Careers~

Nucleus has 12 new nodes equipped with 4GPUs each.

Full node specs: 2x Intel Xeon Gold 6240 Processor (CPU) 36 physical cores 387GB of RAM 4x
NVIDIA Tesla V100

Welcome to the BioHPC User Portal
Nucleus Queue: Nodes Available:
Quota Usage:
Recently Top Used Modules: 28 E EEEoeS

BioHPC is hiring - Do you want to work in HPC at UT Southwestern? See our Careers Page

Learn more about BioHPC membership. View our Business Plan

News & Updates Open Support Tickets

+ OnDemand Applications, and more! No open tickets from your email address.
+ OnDemand RStudio Now Supported - Run RStudio in a Faster Way

Note, tickets submitted from an email address other than that registered with your
+ Singularity Now Supported - Run Docker Containers on the BioHPC 9 y

BinHPC aceonnt will nat he shown here. o

UT Southwestern .
Medical Center ‘ BioHPC

Lyda Hill Department of Bioinformatics

Variables in R Summary

= character: "treatment”, "123", 'A’, "A"
» numeric: 23.44, 120, NaN, Inf

= integer: 4L, 1123L

= |ogical: TRUE, FALSE, NA

= factor: factor("Hello"), factor(8)
(see next slide)

%
> class("hello")
[1] "character"

> class(3.844)
[1] "numeric"

> class(77L)
[1] "integer"

> class(factor("yes"))
[1] "factor"

> class(TRUE)
[1] "logical"

UT Southwestern

Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

Factors (very important!)

» categorical variables for when we would prefer numeric values with associated labels, they
don’t have to be labeled.

= most important uses of factors: statistical modeling; since categorical variables enter into
statistical models differently than continuous variables, storing data as factors insures that
the modeling functions will treat such data correctly.

= Example:

> a <- factor (c("a", "b", "c", "b", "c", "b", "a", "c", "c")) # create the factor

> a # Print the new variable

[1] a bcbcbacoc # You can tell those are not stored as character: no quotes
Levels: a b ¢ # Also the levels print out

> levels (a) # You can get the set of levels separately

UT Southwestern

Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

Type conversion

as.character (20106)

[1] "2016"

as.numeric (TRUE)

[1] 1

as.integer (99)

[1] 99

as.factor ("something")

[1] something Levels: something
as.logical (0)

[1] FALSE

UT Southwestern

Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

How to deal with dates & times

= package lubridate

Load the lubridate package
> library(lubridate)

Experiment with basic lubridate functions
> ymd("2015-08-25")
[1] "2015-g8-25 UTcv Year-month-cay
> ymd("2015 August 25")

[1] "2015-08-25 UTC" year-month-day

> mdy ("August 25, 2015")
[1] "2015-08-25 UTC" month-day-year

> hms("13:33:09")

[1] "13H 33M 9S" hour-minute-second

> ymd_hms("2015/08/25 13.33.09")

[1] "2015-08-25 13:33:09 UTC" Yyear-month-day hour-minute-second

UT Southwestern
Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

Practice

Load the lubridate package

3

create a character type object ("17 Sep 2015") and

name it dob

Coerce dob to a date and store as object mydate

UT Southwestern

Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

Operators

= Arithmetic Operators

= Relational Operators

= |_ogical Operators

» Assignment Operators

» Miscellaneous Operators

+,-,%./,", %%

>,<a::,!:

&,],!

<- or = or ->

., %in%

UT Southwestern
Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

Practice

> v <= c¢c(2,5.5,0); t <= c(8, 3, 4)

> vt

> vl <- ¢ (3,1, TRUE, 2+31) ;
c(3,1,TRUE, 2+31) -> v2;
v3 = ¢ (3,1, TRUE, 2+31)

> v|t; v| |t

> v <—- 2:8

UT Southwestern

Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

' R Data Structures Summary

Homogeneous Heterogeneous

Atomic vector

Data Frame

SRR Tibble

Array

UT Southwestern .
Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

V V. V V V V

vV V V V

R Data Structures

Vectors

<- ¢(1,2,5.3,6,-2,4) # numeric vector

<- ¢ (TRUE, TRUE, TRUE, FALSE, TRUE, FALSE) #logical vector

a
a

b <= c("one","two","three") # character vector

b

c

(c <- c(TRUE, TRUE, TRUE, FALSE, TRUE, FALSE)) #logical vector

Matrices (All columns in a matrix must have the same mode(numeric, character,

etc.) and the same length)
y <- matrix(1:20, nrow=5, ncol=4) # generates 5 x 4 numeric matrix

cells <- c(1,26,24,68)

rnames <- c("R1", "R2")

cnames <- c("Cc1i", "Cc2")

mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=TRUE,

dimnames=1list (rnames, cnames))

UT Southwestern
Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

Practice

» Create a vector of red, green and yellow

">

» Create the magic matrix ->

» Create a 3*3 identity matrix

">

==l

_

-

UT Southwestern
Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

R Data Structures cont.

= Arrays are similar to matrices but can have more than two dimensions

144 7”

> a <- array(c(“green”,”yellow”),dim = c(3,3,2))

= Data Frames are more general than a matrix, in that different columns
can have different modes (numeric, character, factor, etc.)
Are the most commonly used data structure in R

> d <-c¢(1,2,3,4)
> e <- c("red", "white", "red", NA)
> f <- ¢ (TRUE, TRUE, TRUE, FALSE)

> mydata <- data.frame(d,e, f)
> mydata I

L]
> names (mydata) <- c("ID","Color","Passed") # variable names ‘a'

UTSouthwestern
Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

Practice

Create a 3"3*3 array full of ones

['=]
3

Create a data frame with 10 rows and 3 columns, first column with all 1, second column

>

with numbers 1 to 10 and third column with a letter randomly selected from A,B,C (hint:
use code below for third column)

> L3 <- LETTERS[1:3]; fac <- sample (L3, 10, replace = TRUE)

>

UTSouthwestern :
Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

Tibbles

» are data frames, but they tweak some older behaviors to make life a little easier
— more elegant printing of data

» it never changes the type of the inputs (e.g. it never converts strings to factors!),
it never changes the names of variables, and it never creates row names.

»= can have column names that are not valid R variable names, aka non-syntactic

names. (A syntactically valid name in R consists of letters, numbers and

the dot or underline characters and starts with a letter or the dot not followed by a number. Names
such as ".2way" are not valid, and neither are the reserved words, like “for”)

UTSouthwestern

Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

Creating Data - sampling functions

= we will simply create some data using sampling functions

> x <- sample(c('Heads', 'Tails', 'Edge', 'Blows Up'), b5,
replace=T, prob=c(.45, .45, .05, .05))

> x2 <- rbinom (5, 1, .5)

> x3 <= rnorm (50, mean=50, sd=10)

> set.seed(Sys.time ())

UT Southwestern

Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

I Creating Data - Tibbles

> library(tidyverse) #> # A tibble: 5 x 3

#> X)% %
#> <int> <dbl> <dbl>

> as tibble(iris)

#> 1 1 1 2
#t> 2 2 1 5
> tibble >3 3 1 10
#> 4 4 1 17
#> 5 5 1 26
x = 1:5,
#> # A tibble: 150 x 5
#> Sepal.Length Sepal.Width Petal.lLength Petal.Width Species
3] =]_, #t> <dbl> <dbl> <dbl> <dbl> <fctr>
#> 1 S Shiia) 1.4 0.2 setosa
#> 2 4.9 3.0 4 0.2 setosa
Z =X " 2+ vV s 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 2.6 1.4 0.2 setosa
) #> 6 5.4 3.9 1.7 0.4 setosa
#> # . with 144 more rows
UTSouthwestern

Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

Exercise

How can you tell if an object is a tibble?

Compare and contrast the following operations on a data.frame
and equivalent tibble. What is different?

df <- data.frame(abc = 1, xyz = "a")
df$xyz

df [, "xyz"]

[

33

df[, C("abC", "Xyzll) :|

UTSouthwestern
Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

Importing Data

R can read data from files

* Very important concept: Working Directory (this is where R
will read data from by default)

> getwd () # get current working directory
> setwd ("<new path>") # set working directory

Note that the forward slash should be used as the path
separator even on Windows platform > setwd (“C:/MyDoc")

UTSouthwestern

Medical Center BioHPC

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

File Import - Data Tables

Table File

= A data table can reside in a text file. The cells inside the table are
separated by blank characters. Here is an example of a table with 5 rows

and 3 columns. The example files are all to be found in the biohpc r zip

file. Please download it here: https://tinyurl.com/biohpc-r-data

" > mydata <- read.table (“mydata.txt”) # read text

file 100 al b1
200 a2 b2 EE
300 a3 b3)
400 a4 b4
500 a5 b5

UTSouthwestern
Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

File Import - csv

3

CSV File

= Each cell inside is separated by a special character, which usually is a comma, although
other characters can be used as well. The first row of the data file should contain the
column names instead of the actual data.

> mydata = read.csv("mydata.csv") # read csv file

Coll,Col2,Col3
100,al,bl
200,a2,b2
300,a3,b3

» more import functions - http://www.r-tutor.com/r-introduction/data-frame/data-import

UT Southwestern

Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

Import - CSV Example

The behavior of the different import functions varies slightly.

> data<- m

read.csv (“household power consumption.txt", "} O

sep=",;", header = FALSE, stringsAsFactors=FALSE,

na.strings = "?", skip=66637 , nrows=2880)

> colnames (data) <-

#set the column names

names (read.csv ("household power consumption.txt"

, sep=";", nrows=1l))

UTSouthwestern :
Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

File Import - Excel file

Quite frequently, the sample data is in Excel format, and needs to be imported
into R prior to use. For this, we can use the functions from the readx/ package. It
reads from an Excel spreadsheet and returns a data frame.

library(readxl) # load readxl package
mydata <- read xls(“mydata.xls") # read from first sheet
mydata <- read excel (“"mydata.xlsx”)

Recommendation when issues occur: Store Excel file as tab separated file and
use RStudio “Import” function.

UT Southwestern

Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

| Using RStudio for import

©e

®
v &~ # Go to file/function

Console ~/OneDrive - University Of Houston/

R Vers'-lﬂn 3 4 m ranam An Aoy T T
Copyright (Import Excel Data

Platform: 2 rrejun

RStudio

ment

__* Import Dataset ~

History

R is free s ~/OneDrive - University Of Houston/R Tutorial/2Sessions/RExamples_1/mydata.xIsx

7

&

& Project: (None)

Browse...
You are wel
Type 'licer Data Preview:
1st 2nd 3rd
Natural 1 column column column
| (double) ™ (double) ™ (double) ™
R is a coll
Type 'contr 3456 15 67
'citation(} 5678 26 678
5678 17 67
Type 'demo(
'help.start
Type 'q()’
[Workspace
>
Previewing first 50 entries.
=
Import Options: Code Preview: ||
o — ‘ i n library(readxl)
Name: |mydata | WFirstRowas Names mydata <- read_excel("~/OneDrive - University Of Houston/R Tutorial/2Sessions/RExamples_1/mydata.xlsx")
Sheet: pefault NA: pefault View(myddta)
Skip: 0 | v Open Data Viewer
Import Cancel

IED
List ~

:03 PM
9:47 AM

3:54 AM

i:00 PM
12:42 PM

Working with Data - Helpful commands

Get to know your data ...

") .
> mtcars # General info about data set

> head (mtcars) # First couple of lines

Shows that the data i1s a data frame: A rectangular structure
Each column has same type, but different

> str (mtcars) .
columns may have different types

> names (mtcars) # List the column names

summary statistics
> summary (mtcars)

UT Southwestern

Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

Dealing with Missing Values

» |In R, missing values are represented by the symbol NA (not available). Impossible values
(e.q., dividing by zero) are represented by the symbol NaN (not a number). Unlike SAS, R
uses the same symbol for character and numeric data.

» Testing for missing values (NA == NA # Is NA!)

L)

> is.na(x) # returns TRUE of x is missing

>y <- c(1,2,3,NA)

> is.na(y) # returns a vector (F F F T)

» Recoding Values to Missing (if your data uses a different code for missing values)
recode 99 to missing for variable Coll
select rows where Coll is 100 and recode column Coll

> mydata$Coll [mydata$SColl==100] <- NA

UT Southwestern

Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

Dealing with Missing Values

= Counting missing values
> x <= c(1, 2, NA, 4)

> sum(is.na(x)) # sums up the missing values

in a column

>]

L)

= \Which one is NA?
> which (1s.na(x))

> 3

UT Southwestern

Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

Dealing with Missing Values

» Excluding Missing Values from Analyses is often necessary since the default is to propagate
missing values. Many functions have na.rm argument to remove them

> x <- c(1,2,NA, 3)

> mean (x) # returns NA

[
3

» The function complete.cases() returns a logical vector indicating which cases are complete.

> mean (x, na.rm=TRUE) # returns 2

list rows of data that have missing values

> mydatal[!complete.cases (mydata),]

» The function na.omit() returns the object with listwise deletion of missing values.
create new dataset without missing data

> newdata <- na.omit (mydata)

UT Southwestern

Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

Advanced Handling of Missing Data

» Most modeling functions in R offer options for dealing with missing values. You
can go beyond pairwise and listwise deletion of missing values through
methods such as multiple imputation. Good implementations that can be
accessed through R include:

aDAmelia Il (http://gking.harvard.edu/amelia/)

ADMice
(https://www.rdocumentation.org/packages/mice/versions/2.25/topics/mice

)

ADmitools (http://cran.us.r-project.org/web/packages/mitools/index.html)

UT Southwestern

Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

Practice

Explore the
household power consumption.txt dataset
using the commands listed on the

previous slide

UT Southwestern

Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

