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Outline

e Overview of Spark platform and components
* How to submit a Spark job to the BioHPC cluster
 CPU and Memory considerations while submitting a Spark job

to the cluster
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Terabytes to
exabytes of
existing data to
process

Big Data
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Data in
Motion

Streaming data,
milliseconds to
seconds to
respond

Data in
Many Forms

Structured,
unstructured, text,
multimedia

Data in
Doubt

Uncertainty due to
data inconsistency
& incompleteness,
ambiguities, latency
deception, model
approximations

“Big data” is defined by IBM as any
data that cannot be captured, managed
and/or processed using traditional data
management components and
techniques.

A bit of history: Hadoop was introduced in
2006 as a general-purpose form of distributed
processing. Then Spark initially developed in
2012.

Whereas Hadoop reads and writes files to HDFS,
Spark processes data in RAM using a concept
known as an RDD, Resilient Distributed Dataset.
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What is Spark?

* Apache Spark is a fast and general-purpose cluster computing system.
* |t provides high-level APIs in Java, Scala, Python and R, and an optimized
engine that supports general execution graphs.
* |t also supports a rich set of higher-level tools including Spark SQL for SQL
and structured data processing and Mllib for machine learning.
* |t eases developer to build an application to process and analyze big data
in parallel on top of a cluster:
* |Image processing pipelines running on large datasets: Image)
application for stitching microscopy images
* Counting the words of an text file: work count example on page 15
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. Why Spark?
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. Spark Stack

Spark SQL
e For SQL and unstructured
data processing
Millib
* Machine Learning Algorithms
GraphX
* Graph Processing
Spark Streaming
e stream processing of live
data streams

Apache Spark
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Resilient distributed dataset (RDD)

e RDD
* Resilient-if data is lost, data can be recreated
e Distributed-stored in nodes among the cluster
* Dataset-initial data comes from a file or can be created
programmatically
* Partitioned collection of records
* Spread across the cluster
 Read-only
* Caching dataset in memory—different storage levels available

UT Southwestern .
Medical center | BIOHPC

Lyda Hill Department of Bioinformatics



. How basic operations works

e
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. Working with RDDs

textFile = sc.textFile("”SomeFile.txt"”)

.,
/ N RDD

/Transformations\

linesWithSpark. count()
74

linesWithSpark. first()
# Apache Spark

linesWithSpark = textFile.filter(lambda line: "Spark” in line) JI

Spa

Source: http://10minbasics.com/what-is-apache-spark/
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Creating RDDs

Two ways creating an RDD:

» Initialize a collection of values
» val rdd= sc.parallelize(Seq(l,2,3,4))
» Load data file(s) from fileSystem, HDFS, etc.
» val rdd= sc.textFile (“/home2/s183990/hello world.txt”)
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Type of operations

» Transformations
» map
> filter
> union, etc.
» Actions
» Collect
» Count

» foreach, etc.
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How the parallelization works

Suppose we are working with a standalone node with 4 cores.

* We want to increment by 1 each element in a list/array.
* We are running the job in sequential mode.

val data = Seq(1l,2,3,4)
res[] = {}
for (i<-1 to 4) {

res[i] = data[i]+1

res = (2,3,4,5)
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How the parallelization works (cont.)

val rdd= sc.parallelize(Seqg(l,2,3,4))

val rddAdd= rdd.map (i=> 1+1)

1 2 3 4

+1 +1| +1

/
P

res: rddAdd= (2,3,4,5)

+1

P
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we= Core 1
Core 2
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. Execution flow of Spark

14

Driver Program

SparkContext

_—

Cluster Manager

\

Worker Node
Executor | Cache
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Executor Cat:;ae
|| Task || Task

Source: http://spark.apache.org/docs/latest/cluster-overview.html
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Spark application simple example: word count

("Gutenberg’s”™, 1),
("Alice’s”, 1),
("Adventures™, 1),
"in", 1),
("Wonderland”, 1),
("Project”, 1),

("Gutenberg’s”, 1),
("Adventures™, 1),
"in", 1),
("Wonderland”, 1),
("Project”, 1),
("Gutenberg’s”, 1))
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from pyspark.sgl import SparkSession

# initialization of spark context

conf = SparkConf () .setAppName (appName) .setMaster (master)
sc = SparkSession\
.builder\

.appName ("PythonWordCount") \
.config (conf=conf) \
.getOrCreate ()

# read data from FS, as a result we get RDD of lines
linesRDD = sc.textFile (“/project/biohpcadmin/s183990/hello world.txt")

# from RDD of lines create RDD of lists of words
wordsRDD = linesRDD.flatMap (lambda line: line.split("™ ")

(
(
(
(
(
(

# from RDD of lists of words make RDD of words tuples where

# the first element is a word and the second is counter, at the
# beginning it should be 1
wordCountRDD= wordsRDD.map (lambda word: (word, 1))
# combine elements with the same word value
resultRDD = wordCountRDD.reduceByKey (lambda a, b: a + b)

# write it back to FS

resultRDD.saveAsTextFile (“/project/biohpcadmin/s183990/hello world out.txt)
spark.stop ()
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Submitting a simple spark application to the cluster (live demo)
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SLURM submission script: SLURM variables

#!/bin/bash

#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH

—-—partition=32GB
—-—-nodes=2
——mem-per—-cpu=4G
—-—-cpus-per-task=8
—--ntasks-per—-node=2
——-output=sparkjob-%j.out

https://portal.biohpc.swmed.edu/content/training/training-slides/
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SLURM submission script: Preparation

# load the Spark module
module load spark/2.2.2

echo $SLURM NTASKS
echo $SLURM CPUS_ PER_TASK

SPARK DIR="/work/biohpcadmin/s183990"

# identify the Spark cluster with the Slurm jobid
export SPARK IDENT S TRING=$ SLURM JOBID

# prepare directories

export SPARK_WORKER_DIR=$ {SPARK WORKER DIR: —$SPARK_DIR/ .spark/worker}
export SPARK LOG DIR=${SPARK LOG DIR:-S$SSPARK DIR/.spark/logs}

export SPARK LOCAL DIRS=${SPARK LOCAL DIRS:-/tmp/spark}

mkdir -p $SPARK LOG DIR $SPARK WORKER DIR

UT Southwestern

Medical center | BIOHPC

Lyda Hill Department of Bioinformatics



SLURM submission script: Start the worker nodes

# get the resource details from the Slurm job

export SPARK_WORKER_CORES=$ {SLURM CPUS PER TASK:-1}

export SPARK_MEM=$ (( S{ SLURM MEM PER CPU:-4096} * S { SLURM CPUS PER TASK:-1} ))M
export SPARK_EXECUTOR_MEMORY=$ SPARK MEM

# start the workers on each node allocated to the job
srun --output=$SPARK LOG DIR/spark-%j-workers.out —--label \
start-slave.sh $5{MASTER URL} &
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SLURM submission script: Submit the job and clean-up after job is done

spark-submit --master S{MASTER URL} \
--total-executor-cores 5 ((SLURM NTASKS * SLURM CPUS PER TASK)) \
$SPARK HOME/examples/src/main/python/pi.py 10000

# stop the workers
scancel $S{SLURM JOBID}.O0

# stop the master
stop—-master.sh
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Tuning Spark applications on SLURM cluster

Managing CPU resources:

-—total—-executor—-cores

Best practice: adjust the - -total-executor-cores parameter to be
equal to the number of nodes times the number of tasks per
node allocated for application by Slurm,

For instance:

#SBATCH -N 5
#SBATCH --ntasks-per-node 10

total-executor-cores = 100
(assuming 2 cores per node)
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Tuning Spark applications on SLURM cluster (cont.)

Resources: 6 nodes available
on a cluster with 16 core
nodes and 32 GB memory per
node.

Managing memory resources:

Memory used by objects
Cost of accessing those objects
Overhead of garbage collection

Example

Non-optimal:
——num-executors 6
——executor-cores 15
—-—executor-memory 31G

Optimal:

#SBATCH --partition=32GB
#SBATCH -N 6

#SBATCH --ntasks-per-node=4
#SBATCH —--cpus-per-task=4
—-—executor-memory 8G
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Thank you!

Please let us know if you have any questions regarding using
spark on BioHPC by submitting a ticket to BioHPC ticket system.

biohpc-help@utsouthwestern.edu
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