UTSouthwestern

Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

Introduction to Apache Spark

[web] portal.biohpc.swmed.edu
[email] biohpc-help@utsouthwestern.edu

Updated for 2021-05-12

Outline

e Overview of Spark platform and components
* How to submit a Spark job to the BioHPC cluster
 CPU and Memory considerations while submitting a Spark job

to the cluster

UT Southwestern .
BioHPC

Medical Center

Lyda Hill Department of Bioinformatics

Terabytes to
exabytes of
existing data to
process

Big Data

—=e=0 —o=0

Data in
Motion

Streaming data,
milliseconds to
seconds to
respond

Data in
Many Forms

Structured,
unstructured, text,
multimedia

Data in
Doubt

Uncertainty due to
data inconsistency
& incompleteness,
ambiguities, latency
deception, model
approximations

“Big data” is defined by IBM as any
data that cannot be captured, managed
and/or processed using traditional data
management components and
techniques.

A bit of history: Hadoop was introduced in
2006 as a general-purpose form of distributed
processing. Then Spark initially developed in
2012.

Whereas Hadoop reads and writes files to HDFS,
Spark processes data in RAM using a concept
known as an RDD, Resilient Distributed Dataset.

UT Southwestern

Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

What is Spark?

* Apache Spark is a fast and general-purpose cluster computing system.
* |t provides high-level APIs in Java, Scala, Python and R, and an optimized
engine that supports general execution graphs.
* |t also supports a rich set of higher-level tools including Spark SQL for SQL
and structured data processing and Mllib for machine learning.
* |t eases developer to build an application to process and analyze big data
in parallel on top of a cluster:
* |Image processing pipelines running on large datasets: Image)
application for stitching microscopy images
* Counting the words of an text file: work count example on page 15

UT Southwestern

Medical center | BIOHPC

Lyda Hill Department of Bioinformatics

. Why Spark?

Running time (s)

120

8 8

30

Speed

Ease of use Generality Ease of deployment
#Scala o
.. Uscla EEEE
- ((*Q,a - e A
—
s @Mr.sos HBASE

Jav 5 Ppython

UT Southwestern

Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

. Spark Stack

Spark SQL
e For SQL and unstructured
data processing
Millib
* Machine Learning Algorithms
GraphX
* Graph Processing
Spark Streaming
e stream processing of live
data streams

Apache Spark

$
. Compuatoninporalel

UT Southwestern

Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

Resilient distributed dataset (RDD)

e RDD
* Resilient-if data is lost, data can be recreated
e Distributed-stored in nodes among the cluster
* Dataset-initial data comes from a file or can be created
programmatically
* Partitioned collection of records
* Spread across the cluster
 Read-only
* Caching dataset in memory—different storage levels available

UT Southwestern .
Medical center | BIOHPC

Lyda Hill Department of Bioinformatics

. How basic operations works

e

uUT Southwestern .
8 Medical Center | BIOHPC

Lyda Hill Department of Bioinformatics

. Working with RDDs

textFile = sc.textFile("”SomeFile.txt"”)

.,
/ N RDD

/Transformations\

linesWithSpark. count()
74

linesWithSpark. first()
Apache Spark

linesWithSpark = textFile.filter(lambda line: "Spark” in line) JI

Spa

Source: http://10minbasics.com/what-is-apache-spark/

UT Southwestern .
9 Medical center | BIOHPC

Lyda Hill Department of Bioinformatics

10

Creating RDDs

Two ways creating an RDD:

» Initialize a collection of values
» val rdd= sc.parallelize(Seq(l,2,3,4))
» Load data file(s) from fileSystem, HDFS, etc.
» val rdd= sc.textFile (“/home2/s183990/hello world.txt”)

UT Southwestern
Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

Type of operations

» Transformations
» map
> filter
> union, etc.
» Actions
» Collect
» Count

» foreach, etc.

11

UT Southwestern
Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

How the parallelization works

Suppose we are working with a standalone node with 4 cores.

* We want to increment by 1 each element in a list/array.
* We are running the job in sequential mode.

val data = Seq(1l,2,3,4)
res[] = {}
for (i<-1 to 4) {

res[i] = data[i]+1

res = (2,3,4,5)

12

UT Southwestern
Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

How the parallelization works (cont.)

val rdd= sc.parallelize(Seqg(l,2,3,4))

val rddAdd= rdd.map (i=> 1+1)

1 2 3 4

+1 +1| +1

/
P

res: rddAdd= (2,3,4,5)

+1

P

13

we= Core 1
Core 2

UT Southwestern
Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

. Execution flow of Spark

14

Driver Program

SparkContext

_—

Cluster Manager

\

Worker Node
Executor | Cache
Task Task
/ =
\ Worker Node
Executor Cat:;ae
|| Task || Task

Source: http://spark.apache.org/docs/latest/cluster-overview.html

UT Southwestern

Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

Spark application simple example: word count

("Gutenberg’s”™, 1),
("Alice’s”, 1),
("Adventures™, 1),
"in", 1),
("Wonderland”, 1),
("Project”, 1),

("Gutenberg’s”, 1),
("Adventures™, 1),
"in", 1),
("Wonderland”, 1),
("Project”, 1),
("Gutenberg’s”, 1))

15

from pyspark.sgl import SparkSession

initialization of spark context

conf = SparkConf () .setAppName (appName) .setMaster (master)
sc = SparkSession\
.builder\

.appName ("PythonWordCount") \
.config (conf=conf) \
.getOrCreate ()

read data from FS, as a result we get RDD of lines
linesRDD = sc.textFile (“/project/biohpcadmin/s183990/hello world.txt")

from RDD of lines create RDD of lists of words
wordsRDD = linesRDD.flatMap (lambda line: line.split("™ ")

(
(
(
(
(
(

from RDD of lists of words make RDD of words tuples where

the first element is a word and the second is counter, at the
beginning it should be 1
wordCountRDD= wordsRDD.map (lambda word: (word, 1))
combine elements with the same word value
resultRDD = wordCountRDD.reduceByKey (lambda a, b: a + b)

write it back to FS

resultRDD.saveAsTextFile (“/project/biohpcadmin/s183990/hello world out.txt)
spark.stop ()

UT Southwestern
Medical Center

Lyda Hill Department of Bioinformatics

Project’, 2)
‘Gutenberg s’
‘Allce s’ 1)

2)

‘Adventures
Wonderland’

BioHPC

3)

Submitting a simple spark application to the cluster (live demo)

17

SLURM submission script: SLURM variables

#!/bin/bash

#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH

—-—partition=32GB
—-—-nodes=2
——mem-per—-cpu=4G
—-—-cpus-per-task=8
—--ntasks-per—-node=2
——-output=sparkjob-%j.out

https://portal.biohpc.swmed.edu/content/training/training-slides/

UT Southwestern
Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

18

SLURM submission script: Preparation

load the Spark module
module load spark/2.2.2

echo $SLURM NTASKS
echo $SLURM CPUS_ PER_TASK

SPARK DIR="/work/biohpcadmin/s183990"

identify the Spark cluster with the Slurm jobid
export SPARK IDENT S TRING=$ SLURM JOBID

prepare directories

export SPARK_WORKER_DIR=$ {SPARK WORKER DIR: —$SPARK_DIR/ .spark/worker}
export SPARK LOG DIR=${SPARK LOG DIR:-S$SSPARK DIR/.spark/logs}

export SPARK LOCAL DIRS=${SPARK LOCAL DIRS:-/tmp/spark}

mkdir -p $SPARK LOG DIR $SPARK WORKER DIR

UT Southwestern

Medical center | BIOHPC

Lyda Hill Department of Bioinformatics

SLURM submission script: Start the worker nodes

get the resource details from the Slurm job

export SPARK_WORKER_CORES=$ {SLURM CPUS PER TASK:-1}

export SPARK_MEM=$ ((S{ SLURM MEM PER CPU:-4096} * S { SLURM CPUS PER TASK:-1}))M
export SPARK_EXECUTOR_MEMORY=$ SPARK MEM

start the workers on each node allocated to the job
srun --output=$SPARK LOG DIR/spark-%j-workers.out —--label \
start-slave.sh $5{MASTER URL} &

UT Southwestern .
Medical center | BIOHPC

Lyda Hill Department of Bioinformatics

19

SLURM submission script: Submit the job and clean-up after job is done

spark-submit --master S{MASTER URL} \
--total-executor-cores 5 ((SLURM NTASKS * SLURM CPUS PER TASK)) \
$SPARK HOME/examples/src/main/python/pi.py 10000

stop the workers
scancel $S{SLURM JOBID}.O0

stop the master
stop—-master.sh

UT Southwestern .
20 Medical center | BIOHPC

Lyda Hill Department of Bioinformatics

Tuning Spark applications on SLURM cluster

Managing CPU resources:

-—total—-executor—-cores

Best practice: adjust the - -total-executor-cores parameter to be
equal to the number of nodes times the number of tasks per
node allocated for application by Slurm,

For instance:

#SBATCH -N 5
#SBATCH --ntasks-per-node 10

total-executor-cores = 100
(assuming 2 cores per node)

UT Southwestern
Medical Center

Lyda Hill Department of Bioinformatics

21

BioHPC

22

Tuning Spark applications on SLURM cluster (cont.)

Resources: 6 nodes available
on a cluster with 16 core
nodes and 32 GB memory per
node.

Managing memory resources:

Memory used by objects
Cost of accessing those objects
Overhead of garbage collection

Example

Non-optimal:
——num-executors 6
——executor-cores 15
—-—executor-memory 31G

Optimal:

#SBATCH --partition=32GB
#SBATCH -N 6

#SBATCH --ntasks-per-node=4
#SBATCH —--cpus-per-task=4
—-—executor-memory 8G

UT Southwestern .
Medical center | BIOHPC

Lyda Hill Department of Bioinformatics

23

Thank you!

Please let us know if you have any questions regarding using
spark on BioHPC by submitting a ticket to BioHPC ticket system.

biohpc-help@utsouthwestern.edu

UT Southwestern
Medical Center

Lyda Hill Department of Bioinformatics

BioHPC

	Slide Number 1
	Outline
	Big data
	What is Spark?
	Why Spark?
	Spark Stack
	Resilient distributed dataset (RDD)
	How basic operations works
	Working with RDDs
	Creating RDDs
	Type of operations
	How the parallelization works
	How the parallelization works (cont.)
	Execution flow of Spark
	Spark application simple example: word count
	Submitting a simple spark application to the cluster (live demo)
	SLURM submission script: SLURM variables
	SLURM submission script: Preparation
	SLURM submission script: Start the worker nodes
	SLURM submission script: Submit the job and clean-up after job is done
	Tuning Spark applications on SLURM cluster
	Tuning Spark applications on SLURM cluster (cont.)
	Thank you!

